翻訳と辞書
Words near each other
・ Kentaro Sekimoto
・ Kentaro Shiga
・ Kentaro Shigematsu
・ Kentaro Shimizu
・ Kentaro Sonoura
・ Kentaro Suda
・ Kentaro Suzuki
・ Kentaro Takada
・ Kentaro Takasaki
・ Kentaro Takekuma
・ Kentaro Toyama
・ Kentaro Tsuda
・ Kentaro Uramoto
・ Kentaro Yabuki
・ Kentaro Yano
Kentaro Yano (mathematician)
・ Kentaro Yoshida
・ Kentarou Kanesaki
・ Kentarō Haneda
・ Kentarō Itō
・ Kentarō Katayama
・ Kentarō Kobayashi
・ Kentarō Ogawa
・ Kentarō Yano
・ Kentarō Ōtani
・ Kentau
・ Kentaurides
・ Kentavious Caldwell-Pope
・ Kentavros
・ Kentchurch


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kentaro Yano (mathematician) : ウィキペディア英語版
Kentaro Yano (mathematician)
Kentaro Yano (1 March 1912 in Tokyo, Japan – 1993) was a mathematician working on differential geometry who introduced the Bochner–Yano theorem.
He also published a classical book about geometric objects (i.e., sections of natural fiber bundles) and Lie derivatives of these objects.
==Publications==

* Les espaces à connexion projective et la géométrie projective des paths, Iasi, 1938
* Geometry of Structural Forms (Japanese), 1947
* Groups of Transformations in Generalized Spaces, Tokyo, Akademeia Press, 1949
* with Salomon Bochner: (Curvature and Betti Numbers ), Princeton University Press, Annals of Mathematical Studies, 1953
*
* Differential geometry on complex and almost complex spaces, Macmillan, New York 1965
* Integral formulas in Riemannian Geometry, Marcel Dekker, New York 1970
* with Shigeru Ishihara: Tangent and cotangent bundles: differential geometry, New York, M. Dekker 1973
* with Masahiro Kon: Anti-invariant submanifolds, Marcel Dekker, New York 1976
* Morio Obata (ed.): (Selected papers of Kentaro Yano ), North Holland 1982
* with Masahiro Kon: CR Submanifolds of Kählerian and Sasakian Manifolds, Birkhäuser 1983
* with Masahiro Kon: Structures on Manifolds, World Scientific 1984

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kentaro Yano (mathematician)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.